Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика ЦЭ
Вариант № 1941
1.  
i

Среди точек B левая круг­лая скоб­ка 13;0 пра­вая круг­лая скоб­ка , T левая круг­лая скоб­ка минус 7;13 пра­вая круг­лая скоб­ка , C левая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та ; ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та пра­вая круг­лая скоб­ка , O левая круг­лая скоб­ка 0;0 пра­вая круг­лая скоб­ка , L левая круг­лая скоб­ка 0; минус 13 пра­вая круг­лая скоб­ка вы­бе­ри­те ту, ко­то­рая при­над­ле­жит гра­фи­ку функ­ции, изоб­ражённому на ри­сун­ке:

1) B
2) T
3) C
4) O
5) L
2.  
i

Одно число мень­ше дру­го­го на 64, что со­став­ля­ет 16% боль­ше­го числа. Най­ди­те мень­шее число.

1) 800
2) 470
3) 336
4) 464
5) 390
3.  
i

Об­ра­зу­ю­щая ко­ну­са равна 26 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 60°. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

1) 338 Пи
2) 338 ко­рень из 3 Пи
3) 169 Пи
4) 260 ко­рень из 3 Пи
5) 676 Пи
4.  
i

Зна­че­ние вы­ра­же­ния 7 ко­си­нус в квад­ра­те 34 гра­ду­сов плюс 10 синус 30 гра­ду­сов плюс 7 синус в квад­ра­те 34 гра­ду­сов равно:

1) 12
2) 17
3) 24
4) 7 плюс 10 ко­рень из 3
5) 14 плюс 5 ко­рень из 3
5.  
i

Две окруж­но­сти с цен­тра­ми A и B ка­са­ют­ся в точке M. Най­ди­те длину от­рез­ка CN, если AC = 5 и диа­метр боль­шей окруж­но­сти на 25 боль­ше ра­ди­у­са мень­шей окруж­но­сти.

1) 10
2) 15
3) 20
4) 30
5) 50
6.  
i

Через вер­ши­ну A пря­мо­уголь­но­го тре­уголь­ни­ка ABC (∠C  =  90°) про­ве­ден пер­пен­ди­ку­ляр AK к его плос­ко­сти. Най­ди­те рас­сто­я­ние от точки K до пря­мой BC, если AK  =  2, AB  =  4, BC  =   ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та .

1) 3
2) 2 ко­рень из 5
3)  ко­рень из 5
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та
5) 6
7.  
i

Со­кра­ти­те дробь  дробь: чис­ли­тель: x в квад­ра­те минус 9, зна­ме­на­тель: 8x в квад­ра­те минус 23x минус 3 конец дроби .

1)  дробь: чис­ли­тель: x минус 3, зна­ме­на­тель: 8x плюс 1 конец дроби
2)  дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: 8x минус 1 конец дроби
3)  дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: x плюс 1 конец дроби
4)  дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: 8x плюс 1 конец дроби
5)  дробь: чис­ли­тель: x минус 3, зна­ме­на­тель: 8x минус 1 конец дроби
8.  
i

Сумма всех на­ту­раль­ных ре­ше­ний не­ра­вен­ства  левая круг­лая скоб­ка 6 минус x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка x минус 13 пра­вая круг­лая скоб­ка в квад­ра­те \geqslant0 равна:

1) 11
2) 19
3) 21
4) 34
5) 36
9.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 240 умно­жить на дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби минус левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка : дробь: чис­ли­тель: 1, зна­ме­на­тель: 240 конец дроби .

1) 0,1
2) −24
3) −0,1
4) 81,6
5) 24
10.  
i

Ука­жи­те номер квад­рат­но­го урав­не­ния, кор­ня­ми ко­то­ро­го яв­ля­ют­ся числа x1 − 1, x2 − 1, где x1, x2  — корни квад­рат­но­го урав­не­ния 3x2 − 5x − 6  =  0.

1) x2 + x − 6  =  0;

2) 3x2 − 11x + 8  =  0;

3) 3x2 − x − 8  =  0;

4) 3x2 + 11x + 8  =  0;

5) 3x2 + x − 8  =  0.

1) 1
2) 2
3) 3
4) 4
5) 5
11.  
i

Най­ди­те ко­ли­че­ство всех целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: 64x минус x в кубе , зна­ме­на­тель: 5x конец дроби боль­ше 0.

12.  
i

Най­ди­те про­из­ве­де­ние боль­ше­го корня на ко­ли­че­ство кор­ней урав­не­ния  дробь: чис­ли­тель: 21, зна­ме­на­тель: x в квад­ра­те минус 4x плюс 10 конец дроби минус x в квад­ра­те плюс 4x=6.

13.  
i

Вы­бе­ри­те все вер­ные утвер­жде­ния, яв­ля­ю­щи­е­ся свой­ства­ми не­чет­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­делённой на x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; бес­ко­неч­ность пра­вая круг­лая скоб­ка и за­дан­ной фор­му­лой f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те плюс 10x при x\leqslant0.

1.  Функ­ция имеет три нуля.

2.  Функ­ция убы­ва­ет на про­ме­жут­ке [6; 9].

3.  Мак­си­мум функ­ции равен 25.

4.  Ми­ни­маль­ное зна­че­ние функ­ции равно -25.

5.  f левая круг­лая скоб­ка f левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка плюс 1 пра­вая круг­лая скоб­ка =0.

6.  Функ­ция при­ни­ма­ет от­ри­ца­тель­ные зна­че­ния при x при­над­ле­жит левая квад­рат­ная скоб­ка 10; 14 пра­вая квад­рат­ная скоб­ка .

7.  Гра­фик функ­ции сим­мет­ри­чен от­но­си­тель­но оси абс­цисс.

 

Ответ за­пи­ши­те в виде по­сле­до­ва­тель­но­сти цифр в по­ряд­ке воз­рас­та­ния. На­при­мер: 123.

14.  
i

Вы­бе­ри­те три вер­ных утвер­жде­ния:

1)  если  ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус a пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби пра­вая круг­лая скоб­ка , то a= дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби ;

2)  если  ко­си­нус альфа = минус ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  арк­ко­си­нус левая круг­лая скоб­ка ко­си­нус альфа пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

3)  если  синус альфа = синус дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 18 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 18 конец дроби ;

4)  если  арк­ко­си­нус a= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то a= ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

5)  если  синус альфа = синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  альфа = минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

6)  если  синус альфа = синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби .

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 123.

15.  
i

Гра­дус­ная мера угла ABC равна 126°. Внут­ри угла ABC про­ве­ден луч BD, ко­то­рый делит дан­ный угол в от­но­ше­нии 1 : 6 (см. рис.). Най­ди­те гра­дус­ную меру угла 1, если BO  — бис­сек­три­са угла DBC.

16.  
i

Вы­бе­ри­те вер­ные утвер­жде­ния:

 

1)  число 599 крат­но числу 3;

2)  число 387 крат­но числу 9;

3)  число 655 крат­но числу 10;

4)  число 456 крат­но числу 4;

5)  число 242 крат­но числу 6;

6)  число 890 крат­но числу 5.

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 123.

17.  
i

Дана ариф­ме­ти­че­ская про­грес­сия −48; −40; −32; ... . Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­ния

A)  Раз­ность этой про­грес­сии равна ...

Б)  Чет­вер­тый член этой про­грес­сии равен ...

В)  Сумма шести пер­вых чле­нов этой про­грес­сии равна ...

Окон­ча­ние пред­ло­же­ния

1)  −24

2)  0

3)  8

4)  −160

5)  −8

6)  −168

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер, А1Б1В4.

18.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 10 ко­рень из 3 .

19.  
i

Най­ди­те про­из­ве­де­ние наи­боль­ше­го це­ло­го от­ри­ца­тель­но­го и наи­боль­ше­го це­ло­го по­ло­жи­тель­но­го ре­ше­ний не­ра­вен­ства

3 умно­жить на 16 в сте­пе­ни левая круг­лая скоб­ка \tfracx в квад­ра­те минус 29 пра­вая круг­лая скоб­ка минус 3x минус 10 умно­жить на 16 в сте­пе­ни левая круг­лая скоб­ка \tfracx в квад­ра­те минус 29 пра­вая круг­лая скоб­ка минус 6x боль­ше 8.

20.  
i

Най­ди­те сумму всех целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка мень­ше или равно ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка x в квад­ра­те минус 6x минус 7 пра­вая круг­лая скоб­ка минус 1.

21.  
i

Пусть A= ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 22 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 20 конец ар­гу­мен­та минус ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та конец ар­гу­мен­та . Най­ди­те зна­че­ние вы­ра­же­ния A12.

22.  
i

Бис­сек­три­са угла А па­рал­ле­ло­грам­ма ABCD пе­ре­се­ка­ет сто­ро­ну ВС в точке К так, что ВК  =  2, СК  =  3. Най­ди­те зна­че­ние вы­ра­же­ния S2, где S  — пло­щадь па­рал­ле­ло­грам­ма ABCD, если ве­ли­чи­на угла А равна 60°.

23.  
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x минус 2y = 10,xy = 12. конец си­сте­мы . Най­ди­те зна­че­ние вы­ра­же­ния x_1y_2 плюс x_2y_1.

24.  
i

В рав­но­бед­рен­ной тра­пе­ции диа­го­наль пер­пен­ди­ку­ляр­на бо­ко­вой сто­ро­не. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та умно­жить на S, где S  — пло­щадь тра­пе­ции, если боль­шее ос­но­ва­ние тра­пе­ции равно 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , а один из углов тра­пе­ции равен 60°.

25.  
i

Най­ди­те сумму целых зна­че­ний x, при­над­ле­жа­щих об­ла­сти опре­де­ле­ния функ­ции

y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 12 минус x минус x в квад­ра­те пра­вая круг­лая скоб­ка .

26.  
i

Куб впи­сан в пра­виль­ную че­ты­рех­уголь­ную пи­ра­ми­ду так, что че­ты­ре его вер­ши­ны на­хо­дят­ся на бо­ко­вых реб­рах пи­ра­ми­ды, а че­ты­ре дру­гие вер­ши­ны  — на ее ос­но­ва­нии. Длина сто­ро­ны ос­но­ва­ния пи­ра­ми­ды равна 1, вы­со­та пи­ра­ми­ды  — 3. Най­ди­те пло­щадь S по­верх­но­сти куба. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 8S.

27.  
i

Най­ди­те все пары (m, n) целых чисел, ко­то­рые свя­за­ны со­от­но­ше­ни­ем m2 + 2m  =  n2 + 6n + 13. Пусть k  — ко­ли­че­ство таких пар, m0  — наи­мень­шее из зна­че­ний m, тогда зна­че­ние вы­ра­же­ния k · m0 равно ... .

28.  
i

Най­ди­те (в гра­ду­сах) наи­боль­ший ко­рень урав­не­ния

1 минус синус 17x= левая круг­лая скоб­ка ко­си­нус дробь: чис­ли­тель: 19x, зна­ме­на­тель: 2 конец дроби минус синус дробь: чис­ли­тель: 19x, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те

на про­ме­жут­ке [−45°; 180°).
29.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 36 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 12 конец дроби .

30.  
i

На сто­ро­не AB па­рал­ле­ло­грам­ма ABCD от­ме­че­на точка O так, что AB=3AO. К плос­ко­сти ABCD из точки O вос­ста­нов­лен пер­пен­ди­ку­ляр SO дли­ной 8. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 89 конец ар­гу­мен­та ко­си­нус альфа , где  альфа   — ли­ней­ный угол дву­гран­но­го угла BSCD, если CD = 9,BC = 5 и из­вест­но, что пло­щадь ABCD равна 45.